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INTRODUCTION  

All the near-rings under consideration throughout 
this thesis are assumed to be zero-symmetric near-
rings and also containing multiplicative identity.  
Further it is assumed that all the N-modules are 
unitary. The concepts of essential extension and 
rational extension were introduced by Barua (2) in 
the theory of near-rings and N-modules which 
already exist in the theory of rings and modules over 
rings.  He introduced these concepts in terms of N-
maps and N-sets. Hans. H. Storrer has introduced the 
notion of critical left ideals in the theory of rings, 
and has given a generalization of primary 
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decomposition to non-commutative rings.  In this 
chapter we extend the notion of critical left ideals to 
near-rings. The relation between critical left ideals of 
type 0 is studied in terms of the concepts essential 
extension and rational extension. Also we extend the 
notions of Primary, Co primary and Z-S co primary 
for N-modules and some interesting results are 
obtained1-5. 
Lawton proved that if N is a distributive generated 
near-ring having a faithful irreducible left N-module 
and if N has descending chain condition on left 
ideals then N contains all mappings of M into itself.  
 
SECTION -1 
Definition 1.1 
Let N be a near-ring and let M be a left N-module 
and let ∆ be a non-zero N-sub module of M. We say 
that M is a “module essential extension” of ∆ if for 
every non-zero N-ideal ∆' of M, ∆∩ ∆' ≠0. 
Definition 1.2 
Let M be a left N-module over a right near-ring N. 
Let ∆ be a non-zero N-sub module of M. We say that 
M is an essential extension of ∆ if for every non-zero 
N-sub module ∆' we have ∆ ∩ ∆' ≠ 0. 
Remark 1.3 
If M is an essential extension of ∆, then M is a 
module essential extension of ∆. But the converse 
need not be true. 
 
 
 

Example 1.4 
Let N = {0, a, b, c} be Klien four group under 
addition. The multiplication is defined by the 
following table. 

. 0 a b c 

0 0 0 0 0 
a 0 a 0 a 
b 0 0 b b 
c 0 a b c 

Take M = N and ∆ = {0, a}.  Now ∆ is a non-zero N-
sub module of M and M is module essential 
extension of ∆ but not an essential extension of ∆ 
since ∆Δ = {0, b} is an N-sub module of M such that 
∆∩∆Δ = {0}. 
Definition 1.5 
Let M be a left N-module and ∆ be a non-zero N-sub 
module of M.  We say that M is a rational extension 
of ∆ if for any N-sub module ∆Δ of M such that ∆ 
⊆ ∆Δ ⊆ M and for any N-homomorphism f: 
∆Δ→M such that ∆ ⊂  Ker f, we have f = 0. 
We know that if M is a module over a ring then the 
rational extension property of M implies essential 
extension property.  But in the case of near-ring 
modules this need not be true which can be justified 
with the following example. 
Example 1.6 
Let D8 = {0, a, 2a, 3a, b, a + b, a + 2b, a + 3b} be 
Dihedral group of order 8. 
The addition and multiplication in D8 are defined by 
the following tables. 

 
. 0 a 2a 3a b a+b 2a+b 3a+b 

0 0 a 2a 3a b a+b 2a+b 3a+b 

a a 2a 3a 0 a+b 2a+b 3a+b b 

2a 2a 3a 0 a 2a+b 3a+b b a+b 

3a 3a 0 a 2a 3a+b B a+b 2a+b 

b b 3a+b 2a+b a+b 0 3a 2a a 

a+b a+b b 3a+b 2a+b a 0 3a 2a 

2a+b 2a+b a+b b 3a+b 2a A 0 3a 

3a+b 3a+b 2a+b a+b b 3a 2a a 0 
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. 0 a 2a 3a b a+b 2a+b 3a+b 

0 0 0 0 0 0 0 0 0 

a 0 a 2a 3a b a+b 2a+b 3a+b 

2a 0 2a 0 2a 0 0 0 0 

3a 0 3a 2a a b a+b 2a+b 3a+b 

b 0 b 2a b b a+b 2a+b 3a+b 

a+b 0 a+b 0 3a+b 0 0 0 0 

2a+b 0 2a+b 2a 2a+b b a+b 2a+b 3a+b 

3a+b 0 3a+b 0 a+b 0 0 0 0 
 
Take N = M = D8. Now N is a near-ring with identity 
a and M is left N-module. Take ∆ = {0, a + b}. Now 
we shall prove that M is a rational extension of ∆. 
Clearly ∆ is an N-sub module of M. Let ∆' be any N-
sub module of M such that ∆ ⊆ ∆'⊆ M. suppose f: 
∆'→M is an N-homomorphism such that ∆ ⊂ Ker f. 
Now here ∆ ⊂ Ker f ⊆ ∆'. But the only proper N-
sub module of M are {0,2a}, {0,b}, {0,a + b}, {0,2a 
+ b},  {0,3a + b}, {0,b,2a,2a + b}. If ∆ = ∆', then f = 
0 since ∆ ⊂  Ker f. If ∆ ≠ ∆', then ∆' = M. Since ∆ 
⊂  Ker f and Ker f is an N-ideal of M, we have Ker f 
= ∆' = M.  Hence f = 0. Thus M is a rational 
extension of ∆. 
Suppose ∆' is a non-zero N-sub module of M which 
is a proper N-module of M different from ∆. Now ∆ 
∩ ∆' = {0}. Therefore M is not essential extension of 
∆. In fact M is not an essential extension of any of its 
proper N-sub modules. 
Definition 1.7 
A left N-module over a near-ring N is said to be 
uniform if it is an essential extension of each of its 
non-zero N-sub modules. 
Definition 1.8 
A left N-module M over a near-ring N is said to be 
strongly uniform if it is uniform and is a rational 
extension of each of its non-zero N-sub modules. 
If X is a subset of an N-module M then < X > stands 
for the N-ideal of M generated by X i.e. the smallest 
N-ideal of M containing X. 
Definition 1.9 
We say that a left N-module M satisfies the 
intersection property if for any two N-sub modules 
∆1, ∆2 of M we have 
< ∆1 ∩ ∆2> = < ∆1> ∩ < ∆2>. 

Remark 1.10 
If N is any near-ring such that every N-sub module 
of N is an N-ideal of N, then N-module satisfies the 
intersection property. 
Proposition 1.11 
Suppose M is a left N-module with ascending chain 
condition on N-sub modules and satisfying the 
intersection property. Then M has an N-ideal which 
is uniform. 
Proof 
Suppose if possible M has no N-ideal which is 
uniform. This implies M is not an essential extension 
of some non-zero N-sub module. Let ∆1 be a non-
zero N-sub module of M such that M is not an 
essential extension of ∆1.  Hence there exists a non-
zero N-sub module ∆1’ such that ∆1 ∩ ∆1' = {0}. By 
the intersection property we have 
< ∆1> ∩ < ∆1' > = < ∆1 ∩ ∆1' > = {0}. 
                Put < ∆1> = l1, and < ∆1' > = l1'.  
This implies l1 ∩ l1' = {0}. By our assumption l1 and 
l1' are not uniform. Since l1' is not uniform there 
exists a non-zero N-sub module ∆2 of l1' such that l1' 
is not an essential extension of ∆2. This implies there 
exists a non-zero N-sub module ∆2' of l1' such that ∆2 
∩ ∆2' = {0}. 
Put < ∆2> =l2 and < ∆2' > = l2'. By intersection 
property we have 
< ∆2> ∩ < ∆2' > = < ∆2 ∩ ∆2' > = {0} => l2 ∩ l2' = 
{0}. 
Again by our assumption l2 and l2' are not uniform. 
Proceeding in this way we obtain a sequence {ln} of 
N-ideals of M such that each of them is not uniform 
and each ln is an N-ideal contained in l'n-1 and  ln ∩ l'n 
= {0} for every n. Since l1 ∩ l1' = {0} and l2⊆ l1' we 
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have l1 ∩ l2 = {0} which implies that l2 is not 
contained in l1. Hence l1 + l2 contain l1 properly.  
Similarly we have l1 +l2 +…+ln contains l1 + l2 +… + 
ln-1 properly.  Thus we get an ascending sequence of 
N-sub modules l1 ⊂ l1 + l2⊂  l1 +l2 + l3⊂ …which is 
not stationary. This is a contradiction to the fact that 
M satisfies A.C.C. for N-sub modules. Therefore M 
has an N-ideal which is uniform. 
2. Critical Left Ideals 
Following the notion of critical left ideal as given by 
Storrer [14] in the theory of rings the concept of 
critical left ideals in near-rings is introduced. 
Definition 2.1 
A left ideal P of a near-ring N is called critical left 
ideal if M = N/P is strongly uniform N-module. 
Remark 2.2 
A left ideal of L of N is said to be modular if there 
exists e Є N such that n-ne Є L for every n Є N. If N 
is a near-ring with identity then every left ideal of N 
will be a modular left ideal. 
Definition 2.3 
A left ideal L of a near-ring N is of type 0 if M = 
N/L is an N-module which has no non-trivial N-
ideals. 
Definition 2.4 
A left ideal L of a near-ring N is of type 2 if M = 
N/L is an N-module which has no non-trivial N-sub 
modules. 
From the definition it follows that every left ideal of 
type 2 is a critical left ideal. However we can still 
strengthen the result as follows. 
Proposition 2.5 
Every left ideal of N which is of type 0 is a critical 
left ideal. 
Proof: Let L be any left ideal of N of type 0. 
To show that N/L is uniform, it is enough to show 
that the intersection of any two non-zero N-sub 
modules is non-zero. Suppose ∆1 = Li/l, i = 1, 2 are 
two non-zero N-sub modules of M = N/L. Assume 
that L1 ⊄  L2 and L2⊄   L1. Choose r1 ЄL1 such that 
r1∉  L2 and r2Є L2 such that r2∉  L1. Since L is a 
modular left ideal of type 0, (L: N) = P is a 0-
primitive ideal of N and M = N/L is an N/P-module 
of type 0.  
By density theorem (Pilz, 115[12]) there exists n1 + 
P Є N1/P such that (n1 + P) (r2 +L) = r1 + L which 

implies that n1r2-r1 Є L ⊂  L1. Consequently n1r2 Є 
L1 ∩ L2 and n1r2∉L. Thus n1r2 + L Є ∆1 ∩ ∆2. This 
shows that intersection of any two non-zero N-sub 
modules of N/L is non-zero. That is M = N/L is 
uniform. 
Now to establish that M = N/L is a rational extension 
of each of its non-zero N-sub modules, assume that 
there exists two non-zero N-sub modules ∆1 and ∆2 
of M such that ∆1 ⊂  ∆2 and an N-homomorphism    
f: ∆2→M with Ker f ⊃  ∆1. Suppose that ∆1 = L1/L 
and ∆2 = L2/L. If L 1 = L2, then clearly f = 0. 
Otherwise choose any r2 Є L2 such that r2∉ L and r1 
Є L1, such that r1∉L. Considering M= N/L as an 
N/P-module and applying the density theorem, there 
exists n1 + P Є N1/P such that (N1 + P) (r1 + L) = r2 + 
L which implies n1r1-r2 ЄL.  Since f is an N-
homomorphism and n1r1 + L Є ∆1 we have f (r2 + L) 
= f (n1r1 + L) = 0. That is f (r2 + L) = 0 for every r2 Є 
L2. Therefore f = 0 and M is a rational extension of 
∆1. Hence L is a critical left ideal of N. 
In the class of critical left ideals of a near-ring N, we 
introduce a relation as follows. 
Definition 2.6 
If l and J are two left ideals of N, l is said to be 
related to J if there exists a∉ l, b∉ J such that la-1 = 
Jb-1 where  

la-1 = {r Є N : ra Є l} and 
Jb-1 = {r Є N:rb Є J} 

Lemma 2.7 
Let N be a near-ring and P and Q are two critical left 
ideals of N then the following statements are 
equivalent. 
i) P is related to Q 
ii) A non-zero N-sub module of N/P is isomorphic to 
a non-zero N-sub module of N/Q. 
Proof 
Suppose P and Q are related, then there exists a and 
b such that Pa-1 = Qb-1 and a∉ P and b∉ Q. 
Consider Pa-1 = {r Є N : ra Є P} 
It is a left ideal of N. If Pa-1 = N, then 1 Є Pa-1, this 
implies 1.a = a Є P which is not the case. Therefore 
Pa-1 ≠ N. Also Qb-1 ≠ N. 
              Define ψ: N/Pa-1 → N/P 
              By ψ(x + Pa-1) = xa + P for x Є N. 
              We shall now show this mapping is well 
defined. 



    

R. Sitha. / International Journal of Arts and Science Research. 1(1), 2014, 38-48. 

Available online: www.uptodateresearchpublication.com   January - June                                                 42 

              Suppose x1 + Pa-1 = x2 + Pa-1 for some x1, x2 
in N 

� x1-x2 Є Pa-1 
� (x1-x2)a Є P 
� x1a-x2a Є P 
� x1a + P = x2a + P 
� Ψ(x1a + P) = ψ(x2 a + P) 

Therefore ψ is well defined. 
Suppose ψ(x1 + Pa-1) = ψ(x2 + Pa-1) 

� x1a + P = x2a + P 
� x1a – x2a Є P 
� (x1 – x2)a Є P 
� x1-x2 Є Pa-1 
� x1 + Pa-1 = x2 + Pa-1 

              Therefore ψ is one-one. 
Hence ψ is an isomorphism of N/Pa-1 onto an N-
submodule of N/P. Thus there is an isomorphism of 
N/Pa-1 onto an N-sub module L/P of N/P. 
Similarly there is an isomorphism of N/Qb-1 onto an 
N-sub module L'/Q of N/Q. Since Pa-1 = Qb-1 we 
have L/P is isomorphic to L'/Q where L/P and L'/Q 
are non-zero N-sub modules of N/P and N/Q 
respectively. 
Conversely suppose that a non-zero N-sub module 
L1/P of N/P is isomorphic to a non-zero N-sub 
module L2/Q of N/Q. Let Ф be the isomorphism of 
L1/P onto L2/Q. Since L2/Q is non-zero we have Ф ≠ 
0. Let b + Q be a non-zero element of L2/Q. This 
implies there exists a non-zero element a + P in L1/P 
such that Ф (a + P) = b + Q. since a + P and b + Q 
are non-zero elements we have a∉ P and b∉ Q.  
Now we Show that Pa-1= Qb-1. Let r Є Pa-1. 

� ra Є P 
� ra + P = 0 
� Ф(ra + P) = 0 
� Ф(r(a + P)) = 0 
� rФ(a + P) = 0 
� r(b + Q) = 0 
� rb + Q = 0 
� rb Є Q 
� r Є Qb-1 

Hence Pa-1 ⊆ Qb-1. Similarly Qb-1 ⊆ Pa-1. Therefore 
Pa-1 = Qb-1 where a∉ P and b∉Q 
Hence P is related to Q. 
 
 

Proposition 2.8 
The relation P is related to Q is an equivalence 
relation in the class of all critical left ideals. 
Proof 
The only condition to be verified is the following. If 
l, J, L are critical left ideals such that l is related to J 
and J is related to L then l is related to L. 
By lemma 1.2.7, there exist non-zero N-sub modules 
∆1/l, ∆2/J of N/l and N/J respectively such that 
∆1/l ≅  ∆2/J 
Similarly there exist non-zero N-sub modules ∆3/J 
and ∆4/L of N/J and N/L respectively such that ∆3/J
≅  ∆4/L.  Since N/J is uniform, we have ∆2 ∩ ∆3 ⊃  J. 
Put ∆ = ∆2 ∩ ∆3. Then ∆/J is isomorphic to a non-
zero N-sub-module of N/l and also ∆/J is isomorphic 
to a non-zero N-sub module of N/L. Hence a non-
zero N-sub module of N/L. Hence l is related to L. 
The equivalence class containing P is denoted by [P]. 
3. Associated Left Ideals of a Module M 
Definition 3.1 
A critical left ideal P of N is said to belong to M if 
there exists 0 ≠ x Є M such that Ann (x) = P. 
Remark 3.2 
The class of all critical left ideals related to P is 
denoted by [P]. 
    Further the set all critical left ideals belonging to 
M is denoted by Ass M. 
Theorem 3.2 
If M satisfies ascending chain condition of N-sub 
modules and also satisfies intersection property. 
Then there exists a non-zero N-sub module B of M 
which is strongly uniform. 
Proof:  By R is strongly uniform there is nothing to 
prove. Suppose now R is not strongly uniform. But 
by our choice R is uniform. Therefore R cannot be a 
rational extension of each of its non-zero N-sub 
modules. 
That is, there exists a maximal N-submodule A of R 
such that R is not a rational extension of A (since M 
satisfies A.C.C. on N-sub modules).  Hence there 
exists N-sub module R' such that A⊆  R'⊆  R, a 
non-zero homomorphism Ф: R'→R such that Ker Ф 
contains A properly. 

Let Ф(R') = B ≠ 0. 
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Then B is a non-zero N-sub module of R. We claim 
that B is a rational extension of each of its non-zero 
N-sub modules. 

Let B' ≠ 0 be any N-sub module of B. 
Put Ф-1(B') = A'. Then A⊂ A' ⊆  R and R is a 
rational extension of A' (by the maximality of A). 
Let f: B״→B be a homomorphism where B'⊆  B״⊆  
B with Ker f ⊃   B' 
If Ф-1(B״) = A״ then Ф-1(B) ⊇  Ф-1(B״) ⊇  Ф-1(B') 

=> Ф-1(B) ⊇ A״⊇ A' 
Further foФ : A״→R is a homomorphism such that 
Ker foФ⊃  A'. But R is a rational extension of A'.  
Therefore foФ = 0 and hence f = 0 on B״. That is, B 
is a rational extension of B'. 
Therefore B ⊂   R and B is a rational extension of 
any of its N-sub modules. As R is uniform, B is also 
uniform.  Therefore B is strongly uniform.  

As a corollary to the above, we have 
Corollory 3.3 
If M satisfies ascending chain condition on N-sub 
modules and also intersection property, then Ass M 
≠ Ф. 
 Proof:  By theorem 1.3.2., M has an N-sub module 
B which is strongly uniform.  Let 0 ≠ x Є B. Then 
Nx ≅  N/P where P = Ann (x) and Nx is strongly 
uniform. Hence P is a critical left ideal associated to 
M. Therefore P Є Ass (m). 

Hence Ass (M) ≠ Ф. 
Some of the properties are following. 

Proposition 3.4 
Let M be an N-module satisfying ascending chain 
condition on N-sub modules. 
a) If M is the union of a family of the N-ideals {Mi} 
of M, then  

Ass M = ∪ i Ass Mi. 
b) If P is a critical left ideal then 

Ass (N/P) = {[P]} 
c) If R⊆  M, then Ass R⊆  Ass M ⊆ Ass R∪  Ass 
(M/R). 
d) If M is the direct sum of N-ideals {Mi} of M, then  

Ass M =∪ i Ass Mi. 
Proof 
 a) Since M = ∪ iM i, we have Mi ⊆  M every i 

=> Ass Mi ⊆  Ass M for every i 
=> Ui Ass Mi ⊆ AssM. 

Suppose P Є Ass (M), and then P is a critical left 
ideal belonging to M. 

� There exists x Є M such that 
Ann(x) = P where P is critical left 
ideal.  Since N =∪ M i we have x Є 
Ni for some i. 

� Ann(x) = P where P is critical left 
ideal. 

� P Є Ass (Mi) 
� Ass (M) ⊆  Ass (Mi) 
� Ass M⊆ Ui Ass (Mi) 

Therefore Ass M = Ui Ass Mi. 
b) We have to show that Ass (N/P) = {[P]} 
where P is a critical left  
ideal of N. 
            Let P be a critical left ideal of N. 
            Let Q be any element of Ass (N/P). 

� Q is a critical left ideal belonging to 
N/P. 

� There exists a non-zero element x + 
P in N/P such that  

Ann (x + P) = Q. 
Since x + P is non-zero we have x∉ P.  Since we are 
assuming    that 1 Є N, we have that any critical left 
ideal is a proper ideal.  Hence 1∉ Q.  Now we shall 
show that Q.1-1 = Px-1. 

We Have Q .1-1 = {r Є N : r . 1 Є Q} = Q 
Now Px-1  =  { r Є N : r.x Є P} 

=  {r Є N : rx + P = P} 
=  {r Є N : r(x + P) = P} 

=  Ann (x + P) = Q 
Therefore Q. 1-1 = Px-1. 

                 Hence Q and P are related, i.e.  Q Є [P] 
                 Conversely suppose that Q Є [P]. 

� Q and P are related. 
� There exists x and y in N such that  

x∉ P and y∉ Q and Px-1 = Qy-1. 
Since x⊆  P we have x+ P is non-zero element of 
N/P.  It can be verified that Q = Ann (x + P). 

� Q is a critical left ideal belonging to 
N/P 

� Q Є Ass (N/P) 
Thus we have Ass (N/P) = {[P]} 
c) If R⊆  M, then Ass(R) ⊆   Ass (M) is clear. 
 Let R be an N-ideal of M. 
 Let P Є Ass M and P = Ann (x). 0 ≠ x Є M. 
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 Case i) If Nx ∩ R = <0> 
Ann (x + R) in M/R = {y Є N : y(x + R) = 0 + R} 

   =  {y Є N : yx Є R} 
   =  {y Є N : yx Є R ∩ Nx} 
   =  {y Є N : yx = 0} 
   =  Ann (x) in M. 
   i.e. P Є Ass (M/R) 

Case ii)If Nx ∩ R ≠ <0>, Let R' = Nx ∩ R 
Consider R' as N-module.  Then Ass (R') ≠ Ф by 

Corollary 1.3.3. 
   Let Q Є Ass (R') 

� There exists y Є R' such that Ann 
(y) = Q 

y Є Nx => There exists a Є N such that y = ax. 
Q = Ann (y) 

=  {z : zy = 0} 
=  {z : z(ax) = 0} 
=  {z : (za)x = 0} 
=  {z : za Є P} 

=   Pa-1 
So Pa-1 = Q1-1, then P is related to Q. 
Hence P Є Ass(R)                 
4. Primary N-Ideals                           
Definition 4.1 
An N-module M is said to be co primary if Ass (M) 
consists of a single element. 
Definition 4.2 
An N-ideal R of M is said to be primary if quotient 
module M/R is co primary. 
Theorem 4.3 
Suppose M is an N-module which satisfies A.C.C. 
on N-sub modules and uniform, then M is co 
primary. 

Proof: Let P Є Ass M, P = Ann (x) and 
Nx ≡ N/P 

If Q Є Ass M, then Q = Ann (y), Ny ≡ N/Q 
Since M is uniform Nx ∩ Ny ≠ 0 

Let C = Nx ∩ Ny. Then C is isomorphic to a non-
zero N-submodule of N/P and also a non-zero N-sub 
module of N/Q.  Therefore P is related to Q. 

Q ~ P Є Ass M. 
 Therefore Ass (m) = {[P]}. 
Definition 4.4 
Let R be an N-ideal of M. R is said to be 
“irreducible” if for any two N-ideals R1 and R2 of M, 
R⊂  R1, R⊂  R2 =>R⊂  R1 ∩R2. 

Definition 4.5 
R is said to be “strongly irreducible” if for any two 
N-sub modules R1 and R2, R⊂  R1, R⊂  R2=>R⊂  
R1 ∩ R2. 
If M satisfies intersection property, clearly an N-
ideal  
R is irreducible if and only if it is strongly 
irreducible. 
Hence if R is an irreducible N-ideal then M/R is 
uniform. 
Theorem 1.4.6 
If M is an N-module which satisfies A.C.C. on N-
sub modules then every N-ideal of M is a finite 
intersection of irreducible N-ideals. 
This can be proved by using A.C.C. on N-sub 
modules. 
Definition 4.7 
A primary decomposition of an N-ideal R of M is a 
representation of R as a finite intersection of primary 
N-ideals. 
Theorem 4.8 
If M is an N-module satisfying A.C.C. on N-sub 
modules and intersection property, then every N-
ideal R of M has a primary decomposition. 
Proof:  By theorem 1.4.6., an N-ideal R of M can be 
written as R = R1∩R2∩….∩Rk where each Ri is 
irreducible N-ideal.  By the intersection property 
each Ri is strongly irreducible.  Then for each i, M/Ri 
is uniform and satisfies A.C.C. on N-sub modules 
and it is co primary by theorem 1.4.3.  Thus Ri is 
primary. 
5. Z-S-Coprimary N-Ideals 
It can be shown that every primary decomposition 
has reduced primary decomposition and uniqueness 
by the familiar methods. 
Lemma 5.1 
Let N be a near-ring with 1 satisfying the conditions 
a)Possesses A.C.C. on ideals. 
b)Every N-sub modules of N is an N-ideal on N 
Then every critical 

Left ideal of N is a prime ideal. 
Proof:  By condition (b), P is an ideal of N and by 
definition of critical left ideal; N/P is strongly 
uniform. If P is not prime, there exist ideals A and B 
such that P⊂  A, P⊂  B and BA⊂  P.  Since P≠ A, 
there exists a Є a and a∉ P. 
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Define a mapping f:N/P→N/P as follows f(x + P) = 
xa + P 

 It is well-defined because 
 x + P = y + P 
 => x –y Є P 
 => (x-y)aЄ P 
 => xa-yaЄ P 
 => xa + P = ya + P 
Clearly this is a module homomorphism and Ker f⊃  
B/P and f ≠ 0.  For if f = 0, then xa Є P for every x Є 
N i.e. Na⊂  P which is not the case since a Є Na and 
a ∉ P. 
This is a contradiction to the hypothesis that N/P is a 
rational extension of each of its non-zero N-
submodules. 

Hence P is prime ideal. 
Definition 5.2 
An ideal Q of N is said to be Z-S-co primary, if  
Px ⊂ Q=>P⊂ r(Q) or x Є Q where r(Q) is the 
intersection of all prime ideals of N containing Q. 
Theorem 5.3 
If N satisfies conditions above, then an ideal Q 
which is Z-S-Co primary is a co primary N-sub 
module. 
Proof:  P Є Ass (N/Q) and P = Ann (x + Q) 
 That is Px⊂  Q, x∉ Q.  Therefore P⊂ r(Q) 
 But r(Q) ⊂  P (since P is prime) 
 Therefore P = r(Q) which implies  

Ass (N/Q) = {[P]}. 
 

CONCLUSION 
Our emphasis has been the study of primary 
decomposition of left n-modules over Right near-
rings that are given by small number of generators 
but are potentially very big. Various efficient 
algorithms for problems in this area have been 
developed. Based on these, some interesting N/P is a 
rational extension of each of its non- zero N sub 
modules which are strongly uniform. The results in 
this article should be considered as a solid basis for 
further investigations. 
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